Question Number	Answer		Mark
1	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	Parallax: The star is viewed from two positions at 6 month intervals Or the star is viewed from opposite ends of its orbit diameter about the Sun	(1)	
	The (change in) angular position of the star relative to fixed/distant stars is measured	(1)	
	The diameter/radius of the Earth's orbit about the Sun must be known and trigonometry is used (to calculate the distance to the star) [Do not accept Pythagoras]	(1)	
	[the marks above may be obtained with the aid of a suitably annotated diagram] e.g		
	Earth Sun Earth Farth Earth Earth		
	Standard candle: Flux/brightness/intensity of standard candle is measured	(1)	
	Luminosity of standard candle is known [accept reference to absolute magnitude Or total power output of star] Inverse square law is used (to calculate distance to standard candle)	(1)(1)	6
	Total for question		6

Question	Answer		Mark
Number			
2	MAX 3		
	The existence of the microwave background:		
	Originates from the Big Bang	(1)	
	Microwave radiation comes from the universe itself Or it is cosmic background radiation [accept CMB]	(1)	
	Microwave wavelength linked to temperature of universe [e.g. indicates a temperature of space of about 3 K]	(1)	
	Originally the universe was a hotter place than it is now O r temperature decreases as the universe expands	(1)	
	Wavelength has been increased Or frequency decreased. (Do not credit changes due to movement of galaxies)	(1)	3
	Total for question		3

Question	Answer		Mark
Number			
3(a)	 Max 2 Angles are measured using the fixed background of more distant stars Find angular displacement of the star (as Earth moves around the Sun) 	(1)	
	over a 6 month period / over a diameter of the Earth's orbit	(1)	
	Diameter of the Earth's orbit about the Sun must be measured/known	(1)	2
	[Full marks can be obtained from an annotated diagram] nearby star to fined dialant stars		
3(b)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate	(1)	
	Idea that red shift is the (fractional) increase in wavelength of light received	(1)	
	(due to) recession of the source from the Earth/observer	(1)	
	Doppler/red shift is used to find v (allow reference to use of red shift equation e.g. $v = zc$)	(1)	
	Appropriate reference to Hubble's Law $\mathbf{Or} \ v = H_{\mathrm{O}}d$	(1)	4
	[for 1st marking point allow "decrease in frequency" for "increase in wavelength"]		
	Total for question		6

Question Number	Answer		Mark
4(a)(i)	A = Red Giants Or Giants B = Main Sequence C = White Dwarfs Or Dwarfs	(1) (1) (1)	3
4(a)(ii)	S \rightarrow A correctly marked (straight line or curve starting at S going near A) A \rightarrow C correctly marked (some upward curving from near A, near to C but can go beyond C)	(1) (1)	2
4(b)	We determine the star's • temperature T (from Wien's law)	(1)	
	• luminosity L (from the H-R diagram)	(1)	
	• (Then) r is calculated using (Stefan's Law) $L=4\pi r^2\sigma T^4$ Or $L=A\sigma T^4$ [accept a re-arranged equation for A Or r]	(1)	3
	Total for question		8

Question Number	Answer	Mark
5 (a)	(A star/astronomical) object of known luminosity (due to some characteristic property of the star/object) (1)	1
5(b)	Use of $F=L/4\pi d^2$ (1) $F = 1.09 \times 10^{-7} \text{ W m}^{-2}$ (1) Example of calculation	2
	$F = \frac{L}{4\pi d^2} = \frac{8.94 \times 10^{27} \text{W}}{4\pi (8.08 \times 10^{16} \text{m})^2} = 1.0896 \times 10^{-7} \text{ W m}^{-2}$	
	Total for question	3

Question Number	Answer	Mark
6(a)(i)	Gravitation OR gravity OR gravitational attraction / pull / force (1)	1
6(a)(ii)	Use of $F = Gm_1m_2/r^2$ (1) $F = 4.2 \times 10^{35}$ (N) (no u.e.) (1)	2
	Example of calculation $F = \frac{Gm_1m_2}{r^2}$ $F = \frac{6.67 \times 10^{-11} \text{ N m}^2 \text{kg}^{-2} (1.6 \times 10^{39} \text{kg}) (4.0 \times 10^{37} \text{kg})}{(3.2 \times 10^{15} \text{ m})^2}$ $F = 4.17 \times 10^{35} \text{ N}$	
6 (a)(iii)	Use of $F = m\omega^2 r$ or $F = mv^2/r$ (1) Use of $T=2\pi/\omega$ or $T=2\pi r/v$ (1) T = 108 (years) [accept 107 – 111 years] (no ue)	3
	[If r^3 appears in solution, max 1 mark out of 3. If $\omega = \sqrt{\frac{G(M+m)}{(R+r)^3}}$ used, then full credit may be given. This method leads to T = 109 years]	
	Example of calculation $\omega = \sqrt{\frac{4.2 \times 10^{35} \text{ N}}{(1.6 \times 10^{39} \text{ kg}) \times 7.7 \times 10^{13} \text{ m}}}$	
	$\omega = 1.85 \times 10^{-9} \text{ rad s}^{-1}$ $T = \frac{2\pi \text{ rad}}{1.85 \times 10^{-9} \text{ rad s}^{-1}} = 3.40 \times 10^{9} \text{ s}$ $3.40 \times 10^{9} \text{ s}$	
	$T = \frac{3.40 \times 10^9 \text{ s}}{365 \times 24 \times 60 \times 60 \text{ s year}^{-1}} = 108 \text{ years}$	

	Total for question		14
	$d = \frac{1.14 \times 10^{8} \text{ms}^{-1}}{1.6 \times 10^{-18} \text{s}^{-1}} = 7.13 \times 10^{25} \text{ m}$		
	Example of calculation $v=Zc=0.38 \times 3 \times 10^8 \text{ m s}^{-1}=1.14 \times 10^8 \text{ m s}^{-1}$		
	Evenula of calculation		
	$d = 7.1 \times 10^{25} \text{ m}$	(1)	3
O(D)(III)	Use of $v = H_0 d$	(1)	
6 (b)(iii)	holes Use of $z = v/c$	(1) (1)	
	Therefore there is no change in wavelength due to rotation of black		
	Reference to plane of orbit being perpendicular to line of sight from the Earth	(1)	
	ALTERNATIVE APPROACH:		
		(1)	_
	effect when the black hole is approaching is to cause a small reduction in the observed red (rather than a blue) shift	(1)	2
	(So) both black holes are still moving away OR (hence) the overall		
	that due to the overall recession	(1)	
6 (b)(ii)	The rotational motion (of the black holes) is small compared with	(1)	
	(Hence) the universe is expanding / provides evidence for Big Bang	(1)	
	galaxies is increasing/galaxies are moving apart	(1)	
	This indicates that distant galaxies are receding / distance between		3
	(compared to that emitted) OR lower/smaller frequency	(1)	
	Radiation (is received) with a longer/stretched wavelength		
* 6 (b)(i)	(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.)		

Question Number	Answer	Mark
7 (a)	Idea that the Earth is orbiting the Sun (1)	
	Reference to (trigonometric) parallax (1)	
	Idea that more distant stars have "fixed" positions (1)	(3)
7 (b)	Diagram to show how to measure angular displacement of star over a 6 month period e.	
	fined diglant stars	
	[Diagram should indicate the Earth in two positions at opposite ends of a diameter, with lines drawn heading towards a point with a relevant angle marked; accept the symmetrical diagram seen in many textbooks.] Use trigonometry to calculate the distance to the star (1)	
	[May be indicated by an appropriate trigonometric formula. Do not accept use of Pythagoras]	
	Need to know the diameter/radius of the Earth's orbit about the Sun (1) [This may be marked on the diagram or seen in a trigonometric formula]	(3)
7 (c)	Standard candle/Cepheid variable/supernovae (1)	(1)
	Total for question	(7)

Question	Answer		Mark
Number	Coloulation of time and ad	/1\	
8(a)(i)	Calculation of time period	(1)	
	Use of $v = \frac{\Delta s}{\Delta t}$ or $\omega = \frac{2\pi}{T}$	(1)	
	Use of $a = \frac{v^2}{r}$ or $a = r\omega^2$	(1)	
	Correct answer	(1)	
	Example of calculation:		
	$T = \frac{24 \times 60 \times 60 s}{15} = 5760 s$		(4)
	$v = \frac{2\pi r}{T} = \frac{2\pi \times 6.94 \times 10^6 m}{5760 s} = 7.57 \times 10^3 ms^{-1}$		
	$a = \frac{v^2}{r} = \frac{\left(7.6 \times 10^3 \text{ ms}^{-1}\right)^2}{6.94 \times 10^6 \text{ m}} = 8.26 \text{ ms}^{-2}$		
	OR		
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{5760 s} = 1.09 \times 10^{-3} ms^{-1}$		
	$a = r\omega^2 = 6.94 \times 10^6 \times (1.09 \times 10^{-3})^2 = 8.26 \text{ms}^{-2}$		
8(a)(ii)	mg equated to gravitational force expression	(1)	
	g (= a) = $8.3 \text{ ms}^{-2} \text{ substituted}$	(1)	
	Correct answer	(1)	(3)
	Example of calculation:		
	$mg = \frac{GMm}{r^2}$		
	$\therefore 8.3 \mathrm{ms}^{-2} = \frac{6.67 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2} \mathrm{M}}{\left(6.94 \times 10^6 \mathrm{m}\right)^2}$		
	$\therefore M = \frac{8.3 \text{ ms}^{-1} \times (6.94 \times 10^6 \text{ m})^2}{6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}} = 6.0 \times 10^{24} \text{ kg}$		
8(b)	The observed wavelength is longer than the actual wavelength / the wavelength is stretched out	(1)	
	One from:		
	The universe is expanding	(1)	
	(All distant) galaxies are moving apart The (recessional) velocity of galaxies is proportional to distance	(1) (1)	
Dhusis	The furthest out <u>galaxies</u> move fastest	(1)	(max 2)
- rnysic	อิกานเพลเกิร (นิโป).เปที่		•

8(c)(i)	A light year is the distance travelled (in a vacuum) in 1 year by light / em-radiation	(1)	
	The idea that light has only been able to travel to us for a time equal to the age of the universe.	(1)	(2)
8(c)(ii)	(Use of v = H _o d to show) $H_o = \frac{1}{t}$	(1)	
	Correct answer	(1)	(2)
	Example of calculation:		
	$H_o = \frac{1}{t} = \frac{1}{12 \times 3.15 \times 10^{16} \text{ s}} = 2.65 \times 10^{-18} \text{ s}^{-1}$		
8(c)(iii)	The answer must be clear and be organised in a logical sequence		
QWC	There is considerable uncertainty in the value of the Hubble constant	(1)	
QWC	Any sensible reason for uncertainty	(1)	
	Idea that a guess implies a value obtained with little supporting evider OR the errors are so large that our value is little better than a guess	nce (1)	(3)
	Total for question		(16)