Question Number	Answer	Mark
1	QWC - Work must be clear and organised in a logical manner using technical wording where appropriate Parallax: The star is viewed from two positions at 6 month intervals $\mathbf{O r}$ the star is viewed from opposite ends of its orbit diameter about the Sun The (change in) angular position of the star relative to fixed/distant stars is measured The diameter/radius of the Earth's orbit about the Sun must be known and trigonometry is used (to calculate the distance to the star) [Do not accept Pythagoras] [the marks above may be obtained with the aid of a suitably annotated diagram] e.g [Accept the symmetrical diagram seen in many text books] Standard candle: Flux/brightness/intensity of standard candle is measured Luminosity of standard candle is known [accept reference to absolute magnitude Or total power output of star] Inverse square law is used (to calculate distance to standard candle)	6

Question Number	Answer	Mark
3(a)	Max 2 - Angles are measured using the fixed background of more distant stars - Find angular displacement of the star (as Earth moves around the Sun) over a 6 month period / over a diameter of the Earth's orbit - Diameter of the Earth's orbit about the Sun must be measured/known [Full marks can be obtained from an annotated diagram]	2
3(b)	QWC - Work must be clear and organised in a logical manner using technical wording where appropriate Idea that red shift is the (fractional) increase in wavelength of light received (due to) recession of the source from the Earth/observer Doppler/red shift is used to find v (allow reference to use of red shift equation e.g. $v=z c$) Appropriate reference to Hubble's Law Or $v=H_{o} d$ [for $1^{\text {st }}$ marking point allow "decrease in frequency" for "increase in wavelength"]	4
	Total for question	6

Question Number	Answer		Mark
4(a)(i)	$\begin{aligned} & \text { A = Red Giants Or Giants } \\ & B=\text { Main Sequence } \\ & C=\text { White Dwarfs Or Dwarfs } \end{aligned}$	(1) (1) (1)	3
4(a)(ii)	 $\mathrm{S} \rightarrow \mathrm{A}$ correctly marked (straight line or curve starting at S going near A) $\mathrm{A} \rightarrow \mathrm{C}$ correctly marked (some upward curving from near A , near to C but can go beyond C)		2
4(b)	We determine the star's - temperature T (from Wien's law) - luminosity L (from the $\mathrm{H}-\mathrm{R}$ diagram) - (Then) r is calculated using (Stefan's Law) $L=4 \pi r^{2} \sigma T^{4}$ Or $L=A \sigma T^{4}$ [accept a re-arranged equation for A Or r]	(1) (1) (1)	3
	Total for question		8

Question Number	Answer		Mark
5(a)	(A star/astronomical) object of known luminosity (due to some characteristic property of the star/object)	(1)	1
5(b)	Use of $F=L / 4 \pi d^{2}$ $F=1.09 \times 10^{-7} \mathrm{~W} \mathrm{~m}^{-2}$ Example of calculation $F=\frac{L}{4 \pi d^{2}}=\frac{8.94 \times 10^{27} \mathrm{~W}}{4 \pi\left(8.08 \times 10^{16} \mathrm{~m}\right)^{2}}=1.0896 \times 10^{-7} \mathrm{Wm}^{-2}$	(1) (1)	2
	Total for question		3

Question Number	Answer		Mark
6(a)(i)	Gravitation OR gravity OR gravitational attraction / pull / force	(1)	1
6(a)(ii)	Use of $F=G m_{1} m_{2} / r^{2}$ $\mathrm{F}=4.2 \times 10^{35}(\mathrm{~N}) \text { (no u.e.) }$ Example of calculation $\begin{aligned} & F=\frac{G m_{1} m_{2}}{r^{2}} \\ & F=\frac{6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\left(1.6 \times 10^{39} \mathrm{~kg}\right) /\left(4.0 \times 10^{37} \mathrm{~kg} /\right.}{\left(3.2 \times 10^{12} \mathrm{~m}\right)^{2}} \\ & F=4.17 \times 10^{35} \mathrm{~N} \end{aligned}$	(1) (1)	2
6(a)(iii)	Use of $F=m \omega^{2} r$ or $F=m v^{2} / r$ Use of $T=2 \pi / \omega$ or $T=2 \pi r / v$ $T=108$ (years) [accept $107-111$ years] (no ue) [If r^{3} appears in solution, max 1 mark out of 3. If $\omega=\sqrt{\frac{G(M+m)}{(R+r)^{3}}}$ used, then full credit may be given. This method leads to $\mathrm{T}=109$ years] $\begin{aligned} & \text { Example of calculation } \\ & \omega=\sqrt{\frac{4.2 \times 10^{35} \mathrm{~N}}{\left(1.6 \times 10^{59} \mathrm{~kg}\right) \times 7.7 \times 10^{13} \mathrm{~m}}} \\ & \omega=1.85 \times 10^{-9} \mathrm{rads}^{-1} \\ & T=\frac{2 \pi \mathrm{rad}}{1.85 \times 10^{-9} \mathrm{rad} \mathrm{~s}^{-1}}=3.40 \times 10^{9} \mathrm{~s} \\ & T=\frac{3.40 \times 10^{9} \mathrm{~s}}{365 \times 24 \times 60 \times 60 \mathrm{~s} \text { year }^{-1}}=108 \text { years } \end{aligned}$	(1) (1) (1)	3

\begin{tabular}{|c|c|c|c|}
\hline *6(b)(i) \& \begin{tabular}{l}
(QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.) \\
Radiation (is received) with a longer/stretched wavelength (compared to that emitted) OR lower/smaller frequency \\
This indicates that distant galaxies are receding / distance between galaxies is increasing/galaxies are moving apart \\
(Hence) the universe is expanding / provides evidence for Big Bang
\end{tabular} \& \begin{tabular}{l}
(1) \\
(1) \\
(1)
\end{tabular} \& 3 \\
\hline 6(b)(ii) \& \begin{tabular}{l}
The rotational motion (of the black holes) is small compared with that due to the overall recession \\
(So) both black holes are still moving away OR (hence) the overall effect when the black hole is approaching is to cause a small reduction in the observed red (rather than a blue) shift \\
ALTERNATIVE APPROACH: \\
Reference to plane of orbit being perpendicular to line of sight from the Earth \\
Therefore there is no change in wavelength due to rotation of black holes
\end{tabular} \& (1)
(1)

(1)
(1) \& 2 \\

\hline 6(b)(iii) \& | Use of $z=v / c$ |
| :--- |
| Use of $v=H_{0} d$ $d=7.1 \times 10^{25} \mathrm{~m}$ |
| Example of calculation $\begin{aligned} & \mathrm{v}=\mathrm{Zc}=0.38 \times 3 \times 10^{8} \mathrm{~ms} \mathrm{~s}^{-1}=1.14 \times 10^{6} \mathrm{~ms}^{-1} \\ & \mathrm{~d}=\frac{1.14 \times 10^{8} \mathrm{~ms}^{-1}}{1.6 \times 10^{-10} \mathrm{~s}^{-1}}=7.13 \times 10^{25} \mathrm{~m} \end{aligned}$ | \& | (1) |
| :--- |
| (1) |
| (1) | \& 3 \\

\hline \& Total for question \& \& 14 \\
\hline
\end{tabular}

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| 7(a) | Idea that the Earth is orbiting the Sun
 Reference to (trigonometric) parallax
 Idea that more distant stars have "fixed" positions | |
| 7(b) | Diagram to show how to measure angular displacement of star over a 6
 month period
 e. | |

Question Number	Answer		Mark
8(a)(i)	Calculation of time period Use of $v=\frac{\Delta s}{\Delta t} \quad$ or $\quad \omega=\frac{2 \pi}{T}$ Use of $a=\frac{v^{2}}{r} \quad$ or $\quad a=r \omega^{2}$ Correct answer Example of calculation: $\begin{aligned} & T=\frac{24 \times 60 \times 60 \mathrm{~s}}{15}=5760 \mathrm{~s} \\ & v=\frac{2 \pi r}{T}=\frac{2 \pi \times 6.94 \times 10^{6} \mathrm{~m}}{5760 \mathrm{~s}}=7.57 \times 10^{3} \mathrm{~ms}^{-1} \\ & a=\frac{v^{2}}{r}=\frac{\left(7.6 \times 10^{3} \mathrm{~ms}^{-1}\right)^{2}}{6.94 \times 10^{6} \mathrm{~m}}=8.26 \mathrm{~ms}^{-2} \end{aligned}$ OR $\begin{aligned} & \omega=\frac{2 \pi}{T}=\frac{2 \pi}{5760 \mathrm{~s}}=1.09 \times 10^{-3} \mathrm{~ms}^{-1} \\ & a=r \omega^{2}=6.94 \times 10^{6} \times\left(1.09 \times 10^{-3}\right)^{2}=8.26 \mathrm{~ms}^{-2} \end{aligned}$	(1) (1) (1) (1)	(4)
8(a)(ii)	mg equated to gravitational force expression $g(=a)=8.3 \mathrm{~ms}^{-2} \text { substituted }$ Correct answer Example of calculation: $\begin{aligned} & \mathrm{mg}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}} \\ & \therefore 8.3 \mathrm{~ms}^{-2}=\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \mathrm{M}}{\left(6.94 \times 10^{6} \mathrm{~m}\right)^{2}} \\ & \therefore \mathrm{M}=\frac{8.3 \mathrm{~ms}^{-1} \times\left(6.94 \times 10^{6} \mathrm{~m}\right)^{2}}{6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}}=6.0 \times 10^{24} \mathrm{~kg} \end{aligned}$	(1) (1) (1)	(3)
8(b)	The observed wavelength is longer than the actual wavelength / the wavelength is stretched out One from: The universe is expanding (All distant) galaxies are moving apart The (recessional) velocity of galaxies is proportional to distance The furthest out galaxies move fastest	(1) (1) (1) (1) (1)	(max 2)

8(c)(i)	A light year is the distance travelled (in a vacuum) in 1 year by light / em-radiation The idea that light has only been able to travel to us for a time equal to the age of the universe.	(2)
8(c)(ii)	(Use of $\mathrm{v}=\mathrm{H}_{0} \mathrm{~d}$ to show) $H_{o}=\frac{1}{t}$ Correct answer Example of calculation: $H_{o}=\frac{1}{t}=\frac{1}{12 \times 3.15 \times 10^{16} \mathrm{~s}}=2.65 \times 10^{-18} \mathrm{~s}^{-1}$	(2)
8(c)(iii) QWC	The answer must be clear and be organised in a logical sequence There is considerable uncertainty in the value of the Hubble constant Any sensible reason for uncertainty Idea that a guess implies a value obtained with little supporting evidence OR the errors are so large that our value is little better than a guess	(3)
	Total for question	(16)

